jueves, 3 de septiembre de 2009

Factorización

En álgebra, la factorización es expresar un objeto o número (por ejemplo, un número compuesto, una matriz o un polinomio) como producto de otros objetos más pequeños (factores), (en el caso de números debemos utilizar los números primos) que, al multiplicarlos todos, resulta el objeto original. Por ejemplo, el número 15 se factoriza en números primos 3 × 5; y a²-b² se factoriza como binomio conjugados (a - b)(a + b).

La factorización de enteros en números primos se describe en el teorema fundamental de la aritmética y la factorización de polinomios (en ciertos contextos) en el teorema fundamental del álgebra.

Caso I - Factor común

Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes.

Factor común monomio

Factor común por agrupacion de términos

ab + ac + ad  =  a ( b + c + d) \,
ax + bx + ay + by  = a (x+y) + b (x+y) = (x+y)(a + b ) \,

Factor común polinomio

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.

un ejemplo:

 5x2(x-y) + 3x(x-y) +7(x-y) \,

Se aprecia claramente que se esta repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:

 (5x2 + 3x +7) \,

La respuesta es:

 (x -y)(5x2 + 3x +7) \,

En algunos casos se debe utilizar el número 1, por ejemplo:

 5a2(3a+b) +3a +b \,

Se puede utilizar como:

 5a2(3a+b) + 1(3a+b) \,

Entonces la respuesta es:

 (3a+b) (5a2+1) \,

Caso II - Factor común por agrupación de términos

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso, es decir:

ab+ac+bd+dc = (ab+ac)+(bd+dc)\,
= a(b+c)+d(b+c)\,
= (a+d) (b+c)\,

Un ejemplo numerico puede ser:

2y + 2j +3xy + 3xj\,

entonces puedes agruparlos de la siguiente manera:

= (2y+2j)+(3xy+3xj)\,

Aplicamos el primer caso (Factor común)

= 2(y+j)+3x(y+j)\,
= (2+3x)(y+j)\,

Caso III - Trinomio cuadrado perfecto

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un T.C.P. debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.

Ejemplo 1:

(5x-3y)^2 = 25x^2-30xy+9y^2\,


Ejemplo 2:

(3x+2y)^2 = 9x^2+12xy+4y^2\,

Ejemplo 3:

(x+y)^2 = x^2+2xy+y^2\,

Ejemplo 4:

4x^2+25y^2-20xy\,

Organizando los términos tenemos

4x^2 - 20xy + 25y^2\,

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

(2x - 5y)^2\,

Caso IV - Diferencia de cuadrados

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.

(ay)^2-(bx)^2= (ay-bx)(ay+bx)\,

O en una forma mas general para exponentes pares:

 (ay)^{2n}-(bx)^{2m}= ((ay)^n-(bx)^m)((ay)^n+(bx)^m)\,

Y utilizando una productoria podemos definir una factorizacion para cualquier exponente, el resultado nos da r+1 factores.

 (ay)^n-(bx)^m= ((ay)^{n/{2^r}}-(bx)^{m/{2^r}})\cdot \prod_{i=1}^{r} ((ay)^{n/{2^i}}+(bx)^{m/{2^i}})   \,

Ejemplo 1:

9y^2-4x^2= (3y)^2-(2x)^2= (3y+2x)(3y-2x)\,

Ejemplo 2: Supongamos cualquier r, r=2 para este ejemplo.

 (2y)^6-(3x)^{12}= ((2y)^{6/2^2}-(3x)^{12/2^2})\cdot\prod_{i=1}^{2} ((2y)^{6/{2^i}}+(3x)^{12/{2^i}})= \,
 ((2y)^{3/2^2}-(3x)^{12/2^2})\cdot((2y)^{3/2^2}+(3x)^{12/2^2})\cdot((2y)^{3/2}+(3x)^{12/2})= \,
 ((2y)^{3/4}-(3x)^{3})\cdot((2y)^{3/4}+(3x)^{3})\cdot((2y)^{3/2}+(3x)^{6}) \,

La factorización de la diferencia o resta de cuadrados consiste en obtener las raíz cuadrada de cada término y representar estas como el producto de binomios conjugados.

Caso V - Trinomio cuadrado perfecto por adición y sustracción

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie.

x^2+xy+y^2=x^2+y^2+2xy-xy=(x+y)^2-xy\,

Caso VI - Trinomio de la forma x2 + bx + c

Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio. Ejemplo:

a^2+2a-15 = (a+5) (a-3) \,

Otro ejemplo:

x^2 + 5x + 6 = 0 \,

la factorización queda como:

(x+3)(x+2) = 0 \,

ya que:

3x2=6 y 3+2 = 5 \,

Caso VII Suma o diferencia de potencias a la n

La suma de dos números a la potencia n, an +bn se descompone en dos factores (siempre que n sea un número impar):

Quedando de la siguiente manera:

 x^n + y^n = (x+y)(x^{n-1}-x^{n-2}y+x^{n-3}y^2-... + xy^{n-2}-y^{n-1}) \,

Ejemplo:

 x^3+1 = (x+1)(x^2-x+1) \,

La diferencia también es factorizable y en este caso no importa si n es par o impar. Que dando de la siguiente manera:

 x^n-y^n = (x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2 +... +xy^{n-2}+y^{n-1}) \,

Ejemplo:

 x^3-1 = (x-1)(x^2+x+1) \,
 a^2-b^2 = (a-b)(a+b) \,

Las diferencias, ya sea de cuadrados o de cubos salen de un caso particular de esta generalización.

Caso VIII Trinomio de la forma ax2 + bx + c

En este caso se tienen 3 términos: El primer término es un cuadrado perfecto, osea que tiene raíz cuadrada exacta, el segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, osea sin una parte literal, asi´:

4x2 + 15x + 9,

Para factorizar una expresion de esta forma; primero se coje el termino al lado de x^2 y se multiplica por toda la expresion pero dejando el segundo termino igual pero en parentesis y dejando todo esto en una fraccion. usando como denominador el termino que estamos multiplicando, multiplicandolo con el 1

\frac{(4X)^2+4(15x)+36}{4*1} \,

Luego separamos en dos fracciones el termino

\frac{4x+12}{4} *\frac{4x+3}{1} \,

Y despues procedemos a eliminar las fracciones

 (x+3)  (4x+3) \,


Ecuaciones

Una ecuación es una igualdad entre dos expresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes oconstantes; y también variables cuya magnitud se haya establecido como resultado de otras operaciones. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar. Por ejemplo, en la ecuación:

\overbrace{3x-1}^{\text{primer miembro}}=\overbrace{9+x}^{\text{segundo miembro}}

La letra x representa la incógnita, mientras que el coeficiente 3 y los números 1 y 9 son constantes conocidas. Resolver una ecuación es encontrar los valores de las incógnitas que la satisfacen, y se llama solución de una ecuación a cualquier valor de dichas variables que cumpla la igualdad planteada. Para el caso dado, la solución es:

x = 5 \,

Todo problema matemático puede expresarse en forma de una o más ecuaciones. Sin embargo no todas las ecuaciones tienen solución, ya que es posible que no exista ningún valor de la incógnita que haga cierta una dada igualdad. También puede ocurrir que haya varios o inclusoinfinitos conjuntos de valores que la satisfagan.

En el caso que todo valor posible de la incógnita haga cumplir la igualdad, la expresión se llama identidad. Si en lugar de una igualdad se trata de una desigualdad entre dos expresiones matemáticas, se denominará inecuación. Una ecuación funcional es aquella en la que algunas de las constantes y variables que intervienen no son realmente números sino funciones; y si en la ecuación aparece algún operador diferencial se llama ecuación diferencial.

División

La división es una operación aritmética de descomposición que consiste en averiguar cuántas veces un número (el divisor) está contenido en otro número (el dividendo). La división es una operación matemática, específicamente, de aritmética elemental, inversa de la multiplicación y puede considerarse también como una resta repetida.

Al resultado entero de la división se denomina cociente y si la división no es exacta, es decir, el divisor no está contenido un número exacto de veces en el dividendo, la operación tendrá un resto o residuo, donde:

 Dividendo \,

 Divisor \,

 Resto \, Cociente \,

Que también puede expresarse:

dividendo = cociente × divisor + resto

Algoritmo de división

Un algoritmo para dividir dos números, por ejemplo 8593 (dividendo) y 23 (divisor), es el siguiente:

Se escribe el dividendo a la izquierda y el divisor a la derecha, contenido en una escuadra abierta hacia la derecha o galera.

Se toma la primera cifra del dividendo (8) y se divide por la primera del divisor (2). En el caso de que la primera cifra del dividendo sea menor que la del divisor se toman dos cifras del dividendo.

Ahora se trata de encontrar el máximo cociente que multiplicado por el divisor sea menor que las dos primeras cifras del dividendo (o tres en el caso señalado).

Puesto que 8:2=4, se multiplica 4x23=92, que excede a 85 (es decir, 92>85), por lo que se toma una unidad inferior, en este caso 3. En efecto, 3x23=69. Este producto se resta de las dos primeras cifras (o tres en el caso señalado), obteniendo 85-69=16.

A este resto se le añade la cifra siguiente del dividendo, 9. Con dicho número, 169, se procede de igual manera que con las primeras cifras, y sucesivamente con todas las cifras del dividendo.

Las dos primeras, en este caso, 1<2. 2="8." 8x23="184;" 7x23="161," 2="4;" 4x23="92;" 3x23="69;" 69="14.

Al no haber más cifras del dividendo, este 14 es el resto, que siempre ha de ser menor que el divisor.

El resultado es el siguiente: 8593 dividido por 23 da un cociente de 373 y un resto de 14; donde se ha de verificar que: 373x23+14=8593.

Algoritmo de la división

Hallemos la división de dividendo 948 y divisor 32. La disposición y algoritmo se describen abajo, siendo el resultado: cociente 29, y resto 20.

 948 \,

 32 \,

 \underline{64} \,  29 \,
 308 \,
 \underline{288} \,
 20 \,

Donde la primera cifra del cociente, "2", es el número que multiplicado por el divisor se aproxima más por defecto a las dos primeras cifras, como número, del dividendo; las cifras "30" que se sitúan debajo es el resto, que representa la diferencia entre dicha multiplicación "64" y las dos primeras cifras del dividendo "94"; (si fuera necesario para poder realizar la multiplicación por defecto, se podrían tomar una cifra más del dividendo).

A dichas cifras "30" se le añade la cifra posterior derecha de del dividendo "8", que, tomado como número 308, se constituye en nuevo dividendo al que se le aplica el mismo procedimiento, dando un nuevo cociente como cifra "9" y un resto de 20. El resultado cociente es el número formado por las dos cifras 29.

Comprobación:

29 * 32 + 20 = 948

Esta es una de las maneras por las que se puede verificar si está bien realizada la división.